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Abstract

We describe a sequential fully implicit (SFI) multi-scale finite volume (MSFV) algorithm for nonlinear multi-phase flow
and transport in heterogeneous porous media. The method extends the recently developed multiscale approach, which is
based on an IMPES (IMplicit Pressure, Explicit Saturation) scheme [P. Jenny, S.H. Lee, H.A. Tchelepi, Adaptive multi-
scale finite volume method for multi-phase flow and transport, Multiscale, Model. Simul. 3 (2005) 50–64]. That previous
method was tested extensively and with a series of difficult test cases, where it was clearly demonstrated that the multiscale
results are in excellent agreement with reference fine-scale solutions and that the computational efficiency of the MSFV
algorithm is much higher than that of standard reservoir simulators. However, the level of detail and range of property
variability included in reservoir characterization models continues to grow. For such models, the explicit treatment of
the transport problem (i.e. saturation equations) in the IMPES-based multiscale method imposes severe restrictions on
the time step size, and that can become the major computational bottleneck. Here we show how this problem is resolved
with our sequential fully implicit (SFI) MSFV algorithm. Simulations of large (million cells) and highly heterogeneous
problems show that the results obtained with the implicit multi-scale method are in excellent agreement with reference
fine-scale solutions. Moreover, we demonstrate the robustness of the coupling scheme for nonlinear flow and transport,
and we show that the MSFV algorithm offers great gains in computational efficiency compared to standard reservoir sim-
ulation methods.
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1. Introduction

The level of detail in reservoir characterization models continues to grow. This is driven by the need to
improve the predictive capacity of dynamic simulations of the complex reservoir displacement processes of
practical interest. These highly detailed heterogeneous reservoir descriptions exceed the computational capa-
bility of existing reservoir simulators. This resolution gap is usually tackled by upscaling the fine-scale descrip-
tion to sizes that can be treated by the numerical simulator. In upscaling, the original model is coarsened using
a computationally inexpensive process. In purely local flow-based upscaling methods [2,3], the process is usu-
ally based on single-phase flow. The simulation study of the multi-phase reservoir displacement process of
interest is then performed using the coarsened (upscaled) model, which is derived using a simple flow process.
These upscaling methods have proved quite successful. However, it is not possible to have a priori estimates of
the errors that are present when complex flow processes are modeled using coarse models constructed via sim-
plified settings.

The multiscale character of the properties of natural porous media makes the problem of predicting flow
and transport in such systems a natural target for multiscale methods. As opposed to conventional upscaling
techniques, we are interested in multiscale formulations that target the coupled problem of flow and transport
with the original (fine-grid) description. The methodology is based on resolving the length and time scales of
interest by maximizing local operations. Recent advances in this area show great promise. Gautier et al. [4]
presented an approach for fast simulation of both flow and transport in heterogeneous porous media. They
used nested grids to obtain the fine-grid flow field, and they integrated the saturation equation (i.e. the trans-
port problem) along streamlines. Hou and Wu [5] developed a multiscale finite-element (MSFE) method, in
which they constructed basis functions designed specifically to capture the fine-scale effects. In their approach,
they achieved localization by boundary condition assumptions on the coarse elements. Hou and Wu [5] dem-
onstrated both the accuracy and superior computational efficiency of their MSFE method compared to stan-
dard finite-element solutions of the fine-grid description. Their MSFE method, however, did not guarantee a
locally conservative reconstruction of the fine-scale velocity field. Chen and Hou [6] extended the applicability
of the multiscale framework by developing a method based on a mixed finite-element formulation. They pro-
vide clear evidence that a locally conservative fine-scale velocity field is necessary in order to perform accurate
transport computations, even for single-phase flow of a tracer. Arbogast [7] and Arbogast and Bryant [8] pre-
sented a mixed finite-element method for nonlinear two-phase flow and transport in heterogeneous porous
media. They localized the problems on the coarse elements using a special boundary condition assumption.
Numerical Greens functions are used to account for the fine-scale effects on the coarse-scale solutions. Aarnes
[9] proposed a modified mixed finite-element framework for modeling the flow problem in highly heteroge-
neous formations. His locally conservative method is based on the construction of special basis functions that
are sensitive to the nature of the elliptic operator. Moreover, the construction accounts for radial flow in the
vicinity of wells without resorting to complicated well models or near-well upscaling procedures.

Jenny et al. [10] developed a multi-scale formulation for the flow problem (pressure and total-velocity) that
fits nicely into a finite-volume framework. In that multi-scale finite-volume (MSFV) method, one set of basis
functions is used to obtain effective coarse-scale transmissibilities, and a second set of basis functions is devised
to ensure that the reconstructed fine-scale total-velocity field is conservative. More recently, Jenny et al. [1]
developed an adaptive sequential approach for multi-phase flow and transport. In their solution algorithm,
the fine-scale flow field is obtained using the MSFV method, and an explicit scheme is then used to solve
the saturation equation on the fine-scale description. This coupling approach is referred to as IMPES (IMplicit
Pressure, Explicit Saturations) in the reservoir simulation community. The high accuracy and efficiency of this
IMPES based MSFV method [1] was demonstrated for a wide variety of difficult heterogeneous test cases.

There has been a concerted effort to build highly detailed reservoir characterization models that represent
the complex multiscale heterogeneity of natural geologic formations as accurately as possible. These high-res-
olution reservoir description models are thought to be more suitable for making predictions of reservoir flow
performance. For such models, the ability to reconstruct high fidelity flow fields using a locally conservative
multiscale scheme offers a huge computational advantage. However, the explicit treatment of the transport
problem (i.e. saturation equations), which is employed in the IMPES-based MSFV method, imposes severe
restrictions on the time step size. This can become the major computational bottleneck when solving highly
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detailed heterogeneous problems of practical interest. Here we show how this problem is resolved with our
Sequential Fully Implicit (SFI) MSFV algorithm. Although no attempts have been made to optimize the
implementation, numerical experiments show that the method is highly efficient, and that the implicit MSFV
results are in excellent agreement with reference fine-scale solutions.

The paper is organized as follows. In Section 2, the governing equations of the model problem are intro-
duced. In Section 3, the fully implicit MSFV method for multi-phase flow and transport is described, and in
Section 4, numerical studies are presented. Finally, conclusions are given in Section 5.

2. Immiscible two-phase flow and transport

We consider the case of immiscible two-phase (oil and water) flow in a heterogeneous porous medium. For
incompressible fluids and rock, the conservation equations of the water and oil can be written as:
/
oSw

ot
þr � uw ¼ �qw;

/
oSo

ot
þr � uo ¼ �qo;

ð1Þ
where / is the porosity (ratio of pore to bulk volumes). In Eq. (1), Sj, uj, and qj denote, respectively, the sat-
uration, Darcy velocity and source term of fluid phase j, where j = w,o for water and oil. For our problem, the
viscosities of the oil and water phases can be different, but the viscosity of each phase is constant. We also
assume that capillarity and gravity effects are negligible; as a result, the Darcy velocities of the oil and water
phases can be written as
uw ¼ �kwrp;

uo ¼ �korp;
ð2Þ
where p is the pressure. The phase mobilities kw and ko are given by
kw ¼ kðxÞ krwðSðx; tÞÞ
lw

;

ko ¼ kðxÞ kroðSðx; tÞÞ
lo

.

ð3Þ
Here, k is the (absolute) permeability of the porous medium, krw and kro are the relative permeability functions
of the oil and water phases, and lw and lo are the water and oil viscosities. The spatial distribution of the
permeability is a dominant factor in dictating the flow behaviors in natural porous formations. The heteroge-
neity of the permeability, k(x), usually exhibits complex multi-scale character [11,12]. In order to resolve the
spatial correlation structures and represent the local variability accurately, the permeability is usually de-
scribed using highly detailed, strongly discontinuous discrete representations [13]. Dealing with such complex
models poses serious challenges to numerical flow simulation. In immiscible displacements, flow (pressure and
total-velocity) and transport (saturation) are nonlinearly coupled, and that adds to the challenge. This non-
linear coupling is due to the fact that relative permeability of a fluid phase is usually represented as a strongly
nonlinear function of the saturation of that phase. The relative permeability functions depend on the partic-
ular porous medium and fluid phases of interest, and they are usually obtained by performing displacement
experiments on core samples.

For the domain of interest, Eq. (1) is supplemented with appropriate initial and boundary conditions. Usu-
ally, the system (reservoir) is assumed to be closed, so that no-flow boundary conditions are imposed at the
periphery. Wells, which are usually represented as source/sink terms, are used to inject fluids into, or produce
fluids out of, the reservoir. Since Sw + So = 1, an equivalent statement to the system of Eq. (1) is given by the
following two equations:
�r � u ¼ q; ð4Þ

/
oSw

ot
þr � ðfwuÞ ¼ �qw; ð5Þ
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where
u ¼ uw þ uo ð6Þ

is the total (Darcy) velocity, and q = qo + qw. In Eq. (5), fw is the fractional flow of water and is defined as
uw = fwu. The total velocity can be written as
u ¼ �krp; ð7Þ

where k = kw + ko is the total mobility, which we write as
k ¼ kðxÞ krwðSwðx; tÞÞ
lw

þ kroðSoðx; tÞÞ
lo

� �
. ð8Þ
Note that in our case, we are ignoring capillarity and gravity, so fw(Sw) = kw/k, which is a (nonlinear) function
of saturation only. Substitution of Eq. (7) into Eq. (4) gives the pressure equation:
r � krp ¼ q. ð9Þ

Eqs. (4) and (5) are usually referred to as the flow and transport problems, respectively. These equations are
representative of the type of system that must be handled accurately and efficiently by a subsurface flow sim-
ulator. In reservoir simulation, the flow problem (Eq. (4)) is usually handled by first solving Eq. (9) for the
pressure field and then computing the total velocity using Darcy’s law (Eq. (7)). For immiscible two-phase
problems in porous media, flow and transport form a coupled nonlinear system (Eqs. (9), (7) and (5)). The
coupling is through the dependence of the total mobility field (Eq. (8)) on saturation S(x, t), which is a function
of space and time.

Next, we describe a multiscale method for the solution of coupled multiphase flow and transport problems
in highly heterogeneous porous formations.
3. Implicit multi-scale finite-volume method

The implicit MSFV approach for multi-phase flow and transport is based on the multi-scale method of
Jenny et al. [10,1]. First we briefly outline the MSFV method for dealing with the flow problem, then we
describe our Sequential Fully Implicit (SFI) multiscale finite-volume algorithm for coupled nonlinear flow
and transport.
3.1. MSFV method for flow

Here we focus on solving the pressure equation in the presence of multiple fluid phases (Eq. (9)). This ellip-
tic equation is of the same form as that for incompressible single-phase flow. In that case, the time-indepen-
dent total mobility (Eq. (8)) is simply k = k/l. As a result, the MSFV method used for single-phase flow
problems [10] can be used to deal with the multi-phase pressure equation.

Without loss of generality, we describe the MSFV method for 3D orthogonal grid. Fig. 1 is a schematic of
the grid, which shows eight adjacent coarse volumes (cells), �Xi ði ¼ 1; 8Þ, and a coarse dual volume, eX,
obtained by connecting the cell centers of the eight coarse cells. The dual volume eX is enlarged to show
the underlying fine grid. The first step is to compute the fluxes across the coarse-volume interface segments,
which lie inside eX, as a function of the surrounding coarse-volume cell-center pressures �p. This is achieved
by constructing eight dual basis functions, eU i ði ¼ 1; 8Þ, one for each adjacent coarse cell. Each basis function
is the solution of the elliptic problem
r � ðkrpÞ ¼ 0 on eX ð10Þ

with the boundary condition
o

oxn
k

op
oxn

� �
¼ 0 on oeX; ð11Þ



Fig. 1. 3D structured orthogonal grid with a dual control volume. The dark lines show the outline of eight adjacent coarse volumes. The
dual volume obtained by connecting the cell centers of the eight coarse volumes is enlarged to show the underlying fine grid.
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where xn is the coordinate normal to the boundary of eX. For dual basis function eUi, the pressure is set to zero
at all corners, except at corner i where p = 1. The fine-scale fluxes within eX can be obtained as functions of the
coarse-volume pressures �p by superposition of these basis functions. Effective coarse-grid transmissibilities can
then be assembled from the integral fluxes across the coarse cell interfaces. These transmissibilities can be used
to solve for the global coarse grid pressure field �p. Note that the only approximation in the method is the local
boundary condition assumption (11). For all the problems we studied to date, the multi-scale results are in
excellent agreement with the fine-scale solutions.

Within a dual coarse volume, a fine-scale pressure field can be obtained using the dual basis functions as
follows
p ¼
X8

v¼1

�pv eUv; ð12Þ
where v refers to one of the eight corner vertices (centers of coarse cells). We are interested in performing trans-
port computations of multiple phases, and it is crucial to have a flow field (pressure and velocity) that is locally
conservative on the fine scale. Unfortunately, the velocity field obtained using Eq. (12) is not conservative, and
that leads to mass balance errors. This is due to the fact that the fluxes across the boundaries of the dual coarse
cells are not necessarily continuous. In order to reconstruct a conservative fine-scale velocity field u from the
coarse solution �p, we compute an additional set of bases – the primal basis functions. Similar to the construc-
tion of the dual basis functions, an elliptic problem
�r � ðkrpÞ ¼ f on �X ð13Þ

is solved for each primal basis function. The fine-scale fluxes extracted from the dual basis functions serve as
boundary conditions for Eq. (13). To obtain a proper representation of the fine-scale velocity field in a coarse
cell �X, we ensure that: (i) the fine-scale fluxes across an interface of �X are continuous, and (ii) the fine-scale
velocity field within �X satisfies
r � u ¼
R

o�X F dCR
�X dX

; ð14Þ
where o�X is the boundary of �X. The fine-scale flux F across o�X depends on the coarse pressures of �X and all
adjacent coarse cells (�pi, i = 1,27). Therefore, the fine-scale velocity field in �X can be expressed as a superpo-
sition of the primal basis functions Ui, i = 1,27.

The construction of the primal basis functions can be described as follows. Each coarse-grid pressure �pi

(i = 1,27) contributes to the fine-scale flux F. Therefore, each coarse pressure �pi defines the boundary
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condition required to compute the fine-scale basis function Ui (for i = 1,27). The 27 elliptic problems that must
be solved are of the same size as those for the transmissibility calculations. In order to ensure solvability of
these Neumann elliptic problems, we set
f ¼
R

o�X F dCR
�X dX

; ð15Þ
which is a uniformly distributed source term within �X. The fine-scale pressure field within the coarse volume �X
is given by
p ¼
X27

j¼1

�pjUj. ð16Þ
The target fine-scale velocity field is reconstructed using the local fine-scale permeability and the pressure from
Eq. (16). It is important to note that for incompressible flow, the computed fine-scale velocity field is diver-
gence free.

The reconstruction of a conservative fine-scale flow field using these two sets of basis functions is elegant
and computationally efficient. This is especially true for large-scale models where only a small fraction of the
total number of coarse cells in the domain requires updating [1]. An alternative approach, which employs the
fine-scale pressure field of Eq. (12) and avoids the use of the primal basis functions, can also be used as follows.
For each (primal) coarse cell, a local problem is defined using the fluxes obtained from the fine-scale pressure
field of Eq. (12) as boundary conditions. This alternative approach requires the reconstruction of a global fine-
scale flow field at every time step.

However, for most problems where the fraction of dual basis functions that requires an update exceeds a
small value (e.g. 5%), this alternative approach is both convenient and computationally efficient. Moreover,
this alternative method allows for extending the treatment to additional flow and transport mechanisms
(e.g. compressible rock and fluids, capillary pressure) in a straight forward manner.
3.2. Sequential fully implicit MSFV algorithm for coupled flow and transport

We use a sequential solution strategy in our MSFV method, where flow (pressure and total velocity) and
transport (saturation) are treated separately and differently. The algorithms are specialized to the specific char-
acteristics of the governing equations. In our Sequential Fully Implicit (SFI) MSFV algorithm, each time step
consists of an outer loop to solve the coupled problems of flow and transport, and an inner (nonlinear) New-
ton loop to solve the implicit transport problem given the updated flow field.

A flow diagram of the outer loop for one time step is shown in Fig. 2. The superscripts n and m denote the
old time and iteration levels, respectively. Saturation is represented by S, the total velocity field by u, the com-
putation of the pressure field by the operator P, and the computation of the transport problem (i.e. saturation
field) by T. For each outer iteration, using the total-mobility field we solve the pressure equation (Eq. (9)),
which is operator P in Fig. 2, and we compute (reconstruct) the fine-scale total-velocity field. This step is
obtained using the MSFV method outlined in the previous subsection and explained in detail by Jenny
et al. [10]. Specifically, we solve
r � k krwðSm
wÞ

lw

þ kroðSm
wÞ

lo

� �
rpmþ1 ¼ q ð17Þ
for pm + 1, and we update the total velocity field, um + 1. Now, given um + 1, a second, or inner, Newton loop is
used to solve the saturation equation for the current time step implicitly, (operator T in Fig. 2). The semi-dis-
crete form of the saturation equation is given by
/
Smþ1

w � Sn
w

Dt
þr � ðf mþ1

w umþ1Þ ¼ �qw ð18Þ
with
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Fig. 2. Flow diagram of the sequential fully implicit MSFV scheme. P and T are operators for the computation of the pressure field and
the transport problem, respectively.
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f mþ1
w ¼ kw

k

� �mþ1

¼
Mkrw Smþ1

w

� �
Mkrw Smþ1

w

� �
þ kro Smþ1

w

� � ; ð19Þ
where M = lo/lw is the viscosity ratio. The hyperbolic saturation equation (Eq. (18)) is amenable to solution
using a local scheme, such as the overlapping Schwarz method. The primal coarse grid provides a natural
blocking structure, and we apply the iterative Schwarz method block wise (that is, each block consists of
the fine-grid in a primal coarse cell). We use a simple first-order upwinding scheme, where the fine-grid satu-
rations from the neighboring coarse cells (evaluated at the previous iteration level) serve as boundary condi-
tions. Our experience indicates that implicit solution of the saturation equations using this approach is quite
robust and computationally efficient. Once the saturation field is converged (to within a small tolerance) every-
where, the new saturation distribution is used to update the total-mobility field (Eq. (8)), which is used in the
construction of the elliptic pressure system employed in the next outer iteration.

We experimented with various coupling schemes. Our results for a wide range of strongly heterogeneous
nonlinear two-phase problems indicate that it is quite important to have a total-velocity field that is conser-
vative on the fine-scale for each outer iteration. The conservation property is not only important for obtaining
accurate and robust implicit solutions of the saturation equations in the inner Newton loop, it is also crucial
for having a coupling scheme of nonlinear flow and transport that is both reliable and computationally effi-
cient. This is especially the case for large time step sizes.

Various tolerance criteria may be used to control the outer loop iteration, that is, the repeated two-stage
solution of the pressure and saturation equations. We have used criteria based on maximum saturation change
as well as the ratio of the total-mobility obtained from two consecutive iterations. This is an area of ongoing
investigation. In our sequential fully implicit multiscale approach, SFI-MSFV, if a single iteration of the outer
loop is followed by explicit integration of the saturation equations, we obtain the IMPES-based MSFV
method [1]. On the other hand, if only a single outer loop iteration is performed, we obtain a sequential impli-
cit MSFV method. The sequential implicit formulation [14–16] has proved quite effective in reservoir simula-
tion practice. It is not unconditionally stable, however. Moreover, the sequential implicit scheme is not exactly
conservative for all fluid phases [17,16].

The plot in Fig. 3, which shows the convergence history of a typical time step, demonstrates that only few
iterations are required to achieve convergence. The SFI-MSFV method has been tested for very large heter-
ogeneous multiphase problems, and the coupling scheme has proved to be quite robust even for very large time
steps (i.e. high throughput).
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3.3. Adaptive computation

The most expensive part of the SFI-MSFV algorithm is the reconstruction of the dual and primal basis
functions. Therefore, to obtain higher efficiency, it is desirable to recompute them only when and where it
is absolutely necessary. We employ the scheme that was developed to adapt the flow computations of the
IMPES-based MSFV method [1]. Namely, if the condition
1

1þ �k
<

km

km�1
< 1þ �k ð20Þ
is not fulfilled (the superscripts m and m � 1 denote the previous two iterations and �k > 0 is a user defined va-
lue) for all fine cells inside a coarse dual cell, then the dual basis functions of that control volume have to be
reconstructed. An illustration of this scheme in 2D is shown in Fig. 4, where the fine and the coarse grids are
drawn with thin and bold lines, respectively. The black squares represent the fine cells in which condition (20)
is not fulfilled. The squares with bold dashed lines are the control volumes for which the dual basis functions
have to be reconstructed. The shaded regions represent the coarse cells for which the primal basis functions
must be updated. In the schematic 2D example of Fig. 4, only 32 of 420 (4 for each of the 105 coarse grid
nodes) total dual basis functions and 207 of 756 (9 for each of the 84 coarse cells) total primal basis functions
have to be reconstructed. Of course, these numbers depend heavily on the user defined threshold �k. In general,
a smaller threshold triggers more fine cells, and as a consequence more basis functions are recomputed each
time step. For a wide variety of test cases, we found that taking �k to be <0.2 yields marginal changes in the
obtained results. In the SFI-MSFV method, the fraction of coarse cells that require updating of the basis func-
tions is typically higher than that observed for the IMPES-based MSFV scheme, and that is expected.



Fig. 4. Illustration of the adaptive scheme to update the basis functions selectively. The fine and coarse grids are represented by thin and
bold lines, respectively. The black squares mark the fine cells in which condition (20) is not fulfilled. The control volumes in which the dual
basis functions must be updated are drawn with bold dashed lines, and the shaded regions are those in which the primal basis functions
must be reconstructed.

P. Jenny et al. / Journal of Computational Physics 217 (2006) 627–641 635
However, we have observed that for reasonably large time steps, the fraction of bases functions that must be
recomputed rarely exceeds 20%.

As noted at the end of Section 3.1, one can avoid using the primal basis functions by computing the
total velocity directly using the pressure field computed with the help of the dual basis functions. This
can also lead to significant savings especially if the fraction of coarse volumes requiring an update is much
greater than 5%. We finally mention that taking advantage of adaptive computation in the inner Newton
loop of our coupling scheme (where implicit solution of the saturation equations is performed) is much
more challenging than that for an IMPES-based scheme where an explicit scheme is used to integrate
the saturation equation.
4. Numerical results

Recently, the MSFV method combined with an IMPES scheme was tested for two-phase flow and transport
in a heterogeneous 3D model with more than 140,000 cells, and it was demonstrated that the multi-scale
results are in excellent agreement with reference fine-scale solutions [1]. Moreover, that MSFV method was
shown to be significantly more efficient than an established Multi-Purpose Reservoir Simulator (MPRS).
However, in cases with severe permeability heterogeneity, the computational efficiency of the overall scheme
can be compromised due to the restrictions on the time step size inherent in the IMPES scheme. Here we dem-
onstrate how this problem is resolved by applying our sequential fully implicit (SFI) MSFV method. The
objective of the numerical studies is to show the following:

(1) The results obtained with the SFI-MSFV method are in excellent agreement with reference fine-scale
results.

(2) The results obtained with the multiscale method are not very sensitive to the choice (size) of the coarse
grid.

(3) The sequential fully implicit coupling scheme leads to robust behavior even for large time step sizes.
(4) The SFI-MSFV approach is computationally efficient.
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To compute fine-scale reference solutions, an established Multi-Purpose Reservoir Simulator (MPRS) was
used. The MPRS simulator is based on a generalized compositional formulation and is capable of modeling a
wide range of reservoir displacement processes. In the MPRS simulator, a simultaneous solution method of
the conservation equations is used for the fully implicit formulation; moreover, the MPRS simulator offers
an IMPES capability. Sophisticated algorithms for both the nonlinear and linear loops are implemented in
this state-of-the-art reservoir simulator. It has to be mentioned that the efficiency of both MPRS and MSFV
simulations depends on the choice of various parameters, which can be further optimized. Consequently, a
detailed quantitative performance comparison is not the objective. Instead, in this section we want to demon-
strate that a multiscale finite-volume framework carries the promise of solving highly heterogeneous, large-
scale reservoir simulation problems of practical interest in a robust and computationally efficient manner.
In the next subsection, the test cases are described; Section 4.2 addresses items (1) and (2) and Section 4.3 deals
with items (3) and (4).

4.1. Test cases

To study the accuracy and efficiency of the SFI-MSFV algorithm, 2D and 3D test cases with uniformly
spaced orthogonal 60 · 220 and 60 · 220 · 85 grids were used. The 3D grid and permeability field are obtained
from the SPE 10 test case [18], which is known to be an extremely difficult problem for reservoir simulators.
While the 3D test case was used for computational efficiency assessment, 2D test cases, which consist of the
top and bottom layers of the SPE 10 model, are used to demonstrate the accuracy of the SFI-MSFV method.
Fig. 5 shows the permeability field with a water injector in the center and four producers wells in the corners.
These well locations are used for all the following studies. The reservoir is initially fully saturated with oil. We
take M = lo/lw = 10, and use quadratic relative permeability curves (i.e. krw ¼ S2

w and kro ¼ ð1� SwÞ2). These
choices lead to a nonlinear coupling of flow and transport, and that is an essential feature of reservoir simu-
lation problems of practical interest.

4.2. 2D simulations of the top and bottom layers

Our SFI-MSFV simulator does not have a sophisticated well model. Accommodating the presence of wells
in the MSFV framework requires special treatment, including the construction of well-specific basis functions
[19]. Here, wells are modeled by defining the total rates for each perforated coarse cell. Therefore, in order to
Fig. 5. 3D test case: permeability field of the SPE 10 problem (darker means lower permeability).
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make accuracy comparisons rigorous, each fine-grid cell in the MPRS simulations, which is inside a perforated
coarse cell, becomes a well (i.e. a source/sink term) with a constant total rate. For large 3D models, this poses
a technical problem since MPRS is not designed to handle an arbitrarily large number of individual wells. For
this reason we decided to do the accuracy assessment in 2D, i.e. with the top and the bottom layers of the 3D
model. These two layers, for which the permeability fields are shown in Fig. 6, are representative for the two
characteristically different regions of the full model. We performed MSFV simulations with uniformly spaced
10 · 22 and 20 · 44 coarse grids and compared the results with the fine-scale solution on a 60 · 220 grid. As in
the full 3D test case, there are four producers at the corners which are distributed over an area of 6 · 10 fine-
scale volumes. The injector is located in the center of the domain and is distributed over an area of 12 · 20
fine-scale volumes. The rates are the same for all fine-scale volumes (positive for the producer volumes and
negative for the injector volumes). In Figs. 7 and 8, the computed saturation fields are shown after 0.093
PVI for the bottom and top layers, respectively. The rightmost plots in these figures show the fine-scale ref-
erence solutions; the left and center plots show the MSFV results for 10 · 22 and 20 · 44 coarse grids, respec-
tively. It can be observed for both layers that the agreement is excellent, and that the multi-scale method is not
sensitive to the choice (size) of the coarse grid. More quantitative comparisons are shown in Fig. 9 where the
fine-scale and multi-scale oil cut (fraction of fluid produced that is oil) and cumulative recovery curves are
plotted. Considering the difficulty of these test problems and the fact that two independently implemented sim-
ulators are used for the comparisons, this agreement is remarkable.

4.3. 3D simulations

While 2D studies are appropriate to study the accuracy of the sequential fully implicit MSFV method, 3D
computations for highly detailed models with strong permeability heterogeneity are required for a meaningful
assessment of the computational efficiency. We employed the 3D test case (i.e. the SPE 10 permeability field)
described above. A coarse 10 · 22 · 17 grid (shown in Fig. 10) was used and 0.5 pore volumes were injected.
Unlike the SFI-MSFV simulations, the wells for the MPRS simulations were defined on the fine-grid.
Fig. 6. Permeability fields of the bottom (left) and top (right) layers (darker means lower permeability). These two layers are representative
for the two characteristically different regions of the full 3D model.



Fig. 7. The saturation fields (dark is water) from three different simulations of the bottom layer of SPE 10.

Fig. 8. The saturation fields (dark is water) from three different simulations of the top layer of SPE 10.
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Table 1 shows an example of the computational time and the required number of time steps for SFI-MSFV
and MPRS simulations. The table shows that the implicit MSFV method is significantly faster than MPRS.
We mention here that although MPRS uses an elaborate control algorithm for time step selection, we invested
a significant effort so that the MPRS simulations are as fast as possible for this extremely difficult and stiff
problem. That required balancing several factors (over the injection period of 0.5 pore volumes) including
the number of time steps and the average number of Newton iterations per time step. On the other hand, with
the SFI-MSFV method, we fixed the time step size at a constant value. The choice was guided by accuracy
considerations since we were able to take time steps that are much larger than was possible with MPRS.
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Fig. 9. Oil cut and recovery curves for the bottom and top layers of the SPE 10 problem.

Fig. 10. 3D test case: coarse 10 · 22 · 17 grid with wells.
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Fig. 11 shows the oil cut and recovery curves obtained with multi-scale simulations using 50 and 200 time
steps. The close agreement between the results indicates that the accuracy of the computed flow response is
not strongly sensitive to the time step size used. The sequential fully implicit coupling scheme allows for spe-
cializing the solution methods to the flow and transport components, which seems to improve the robustness
of the outer and inner nonlinear loops with respect to the time step size. This is an area of ongoing research.
Finally, for a number of highly heterogeneous systems, we have observed that the cost of MSFV simulation



Table 1
Efficiency comparisons between SFI-MSFV and MPRS simulations for the SPE 10 permeability field, which has 60 · 220 · 85 cells

Simulator CPU time (min) Time steps Recomputed basis functions (%) Coarse pressure computations (%)

MPRS 3325 790
MSFV 297 200 10 98

A coarse 10 · 22 · 17 grid was used for the MSFV computations.
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Fig. 11. Oil cut and oil recovery.
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scales almost linearly with problem size, and since the dual and primal basis functions can be computed inde-
pendently (and adaptively), the method is ideally suited for parallel computations and large-scale problems of
practical interest.

5. Conclusions

An adaptive sequential fully implicit multi-scale finite-volume (SFI-MSFV) method for 3D nonlinear multi-
phase flow and transport in heterogeneous porous media was developed and tested for various difficult test
cases. The method has proved to be very efficient, and the results are in excellent agreement with reference
fine-scale solutions. While the discussion here was limited to incompressible nonlinear two-phase flow, the
method is equally applicable to three-phase flow. In that case, one must solve two saturation equations implic-
itly in the inner loop of the coupling scheme.

The multiscale finite-volume (MSFV) framework is very promising, and there is a significant ongoing effort
to extend the modeling capability in several areas. These include: (1) coupled well models, (2) highly compress-
ible fluids and rock, (3) solubility effects including saturated (free gas phase) and under-saturated conditions
(no free gas phase), and (4) the black-oil model (i.e. three component, three-phase, nonlinear compressible
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flow). Finally, numerical issues related to severe anisotropy in both the grid and the underlying permeability
field pose an interesting challenge and is an active research area.
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